Sign up for free to use this document yourself.
  • DATA ANALYSIS FOR CLIMATE CHANGE

    Absalom Carlisle
    Statisticians and data scientists alike use basic analytical concepts to make credible inferences from their data.

    columns: Date (year and month) and Monthly Anomaly in Celcius. The datapoints range from January 1850 to December 2014
    First four variables: Mean, standard deviation, quantiles, and variance.

    print(‘Mean: ‘ ,round(df.Monthly_Anom.mean(),3))
    print(‘Variance: ‘, round(df.Monthly_Anom.var(),3))
    print(‘Standard Deviation: ‘, round(df.Monthly_Anom.std(),3))

    Mean:  -0.093
    Variance:  0.119
    
    
    Standard Deviation:  0.345

    Absalom Carlisle

{"cards":[{"_id":"47830d1fcb389efc95000012","treeId":"47830fcdcb389efc95000010","seq":22753841,"position":1,"parentId":null,"content":"**DATA ANALYSIS FOR CLIMATE CHANGE**\n\n<a href=\"https://medium.com/@absalomcarlisle\">Absalom Carlisle</a> \nStatisticians and data scientists alike use basic analytical concepts to make credible inferences from their data.\n\n columns: Date (year and month) and Monthly Anomaly in Celcius. The datapoints range from January 1850 to December 2014 \nFirst four variables: Mean, standard deviation, quantiles, and variance.\n\n print('Mean: ' ,round(df.Monthly_Anom.mean(),3))\n\tprint('Variance: ', round(df.Monthly_Anom.var(),3))\n\tprint('Standard Deviation: ', round(df.Monthly_Anom.std(),3))\n\t\n\n\tMean: -0.093\n\tVariance: 0.119\n\n\n\tStandard Deviation: 0.345\n\n\n![](https://www.filepicker.io/api/file/pBWOWaYZRw6becc7UEVv)\n\n![](https://www.filepicker.io/api/file/ajjIc1VtTfC2u5XZm8Cs)![](https://www.filepicker.io/api/file/WY3M14SWRjuYtDmQIz0G)\n\n\n\n<a href=\"https://slides.com/absalomcarlisle\n\">Absalom Carlisle</a>"}],"tree":{"_id":"47830fcdcb389efc95000010","name":"Absalom Carlisle - DATA ANALYSIS FOR CLIMATE CHANGE","publicUrl":"absalom-carlisle-data-analysis-for-climate-change"}}